Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 235
1.
Nano Lett ; 24(17): 5154-5164, 2024 May 01.
Article En | MEDLINE | ID: mdl-38602357

Developing novel strategies for defeating osteoporosis has become a world-wide challenge with the aging of the population. In this work, novel supramolecular nanoagonists (NAs), constructed from alkaloids and phenolic acids, emerge as a carrier-free nanotherapy for efficacious osteoporosis treatment. These precision nanoagonists are formed through the self-assembly of berberine (BER) and chlorogenic acid (CGA), utilizing noncovalent electrostatic, π-π, and hydrophobic interactions. This assembly results in a 100% drug loading capacity and stable nanostructure. Furthermore, the resulting weights and proportions of CGA and BER within the NAs are meticulously controlled with strong consistency when the CGA/BER assembly feed ratio is altered from 1:1 to 1:4. As anticipated, our NAs themselves could passively target osteoporotic bone tissues following prolonged blood circulation, modulate Wnt signaling, regulate osteogenic differentiation, and ameliorate bone loss in ovariectomy-induced osteoporotic mice. We hope this work will open a new strategy to design efficient herbal-derived Wnt NAs for dealing with intractable osteoporosis.


Berberine , Chlorogenic Acid , Osteoporosis , Osteoporosis/drug therapy , Animals , Mice , Berberine/pharmacology , Berberine/therapeutic use , Berberine/chemistry , Berberine/administration & dosage , Berberine/pharmacokinetics , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Chlorogenic Acid/administration & dosage , Female , Humans , Osteogenesis/drug effects , Bone and Bones/drug effects , Bone and Bones/pathology , Nanostructures/chemistry , Nanostructures/therapeutic use
2.
Nutrients ; 16(7)2024 Mar 23.
Article En | MEDLINE | ID: mdl-38612964

Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.


Chlorogenic Acid , Polyphenols , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Homeostasis , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biological Availability
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 317-323, 2024 Feb 20.
Article Zh | MEDLINE | ID: mdl-38501417

OBJECTIVE: To investigate the role of caspase-1-medicated canonical pyroptosis pathway in chlorogenic acid (CGA) treatment of acute kidney injury (AKI) in mice. METHOD: Twenty-four C57Bl/6J mice were randomized into sham-operated group, cecal ligation and puncture (CLP) group, CLP+dexamethasone group (CLP+DXM group), and CLP+CGA group (n=6) and subjected to either sham operation (laparotomy only) or CLP. After modeling the mice received intravenous infusion of 10 mg/kg normal saline (in sham and CLP groups), 1 µg/kg dexamethasone or 15 mg/kg of chlorogenic acid for 6 h delivered using an intravenous pump. Eight hours after the infusion, renal morphology and histology, renal cell apoptosis, and the renal function parameters such as urea nitrogen (BUN), creatinine (Scr), and kidney injury molecule 1 (KIM-1) were compared among the 4 groups; the 7-day survival rates of the mice were recorded, and the expressions of NLRP3 inflammasomes and key proteins of the caspase-1 pathway in the renal tissue were detected. RESULTS: CGA treatment significantly improved the 7-day survival rate, reduced renal pathologies of the septic mice (P < 0.05), and lowered the levels of BUN, Scr, KIM-1, NLRP3 inflammasome and expressions of key proteins of the caspase-1 pathway. CONCLUSION: CGA alleviates AKI in mice with CLP-induced sepsis by inhibiting NLRP3 inflammasomes and the caspase-1 signaling pathway.


Acute Kidney Injury , Sepsis , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Caspase 1/metabolism , Pyroptosis , Chlorogenic Acid/therapeutic use , Acute Kidney Injury/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Dexamethasone/therapeutic use , Mice, Inbred C57BL
4.
Aging (Albany NY) ; 16(5): 4832-4840, 2024 Mar 09.
Article En | MEDLINE | ID: mdl-38461437

Osteoporosis is a usual bone disease in aging populations, principally in postmenopausal women. Anti-resorptive and anabolic drugs have been applied to prevent and cure osteoporosis and are associated to a different of adverse effects. Du-Zhong is usually applied in Traditional Chinese Medicine to strengthen bone, regulate bone metabolism, and treat osteoporosis. Chlorogenic acid is a major polyphenol in Du-Zhong. In the current study, chlorogenic acid was found to enhance osteoblast proliferation and differentiation. Chlorogenic acid also inhibits the RANKL-induced osteoclastogenesis. Notably, ovariectomy significantly decreased bone volume and mechanical properties in the ovariectomized (OVX) rats. Administration of chlorogenic acid antagonized OVX-induced bone loss. Taken together, chlorogenic acid seems to be a hopeful molecule for the development of novel anti-osteoporosis treatment.


Osteoclasts , Osteoporosis , Humans , Rats , Female , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Chlorogenic Acid/metabolism , Osteogenesis , Osteoporosis/metabolism , Osteoblasts/metabolism , Cell Differentiation
5.
Neurosci Lett ; 825: 137701, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38395190

Ischemic stroke increases the production of reactive oxygen species (ROS), which can eventually lead to neuronal death. Thioredoxin is a small reductase protein that acts as an eliminator of ROS and protects neurons from brain damage. Chlorogenic acid is known as a phenolic compound that has a neuroprotective effect. We investigated the change of thioredoxin expression by chlorogenic acid in a middle cerebral artery occlusion (MCAO) animal model. Adult rats were injected intraperitoneally with phosphate buffered saline or chlorogenic acid (30 mg/kg) 2 h after MCAO. MCAO damage induced neurological defects and increased ROS and lipid peroxidation levels, however, chlorogenic acid mitigated these changes. MCAO damage reduced thioredoxin expression, which was mitigated by chlorogenic acid treatment. The interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) was decreased in MCAO animals, chlorogenic acid treatment prevented this decrease. In cultured neurons, chlorogenic acid dose-dependently attenuated glutamate-induced decreases in cell viability and thioredoxin expression. Glutamate toxicity downregulated bcl-2 and upregulated bax, cytochrome c, and caspase-3, however, chlorogenic acid attenuated these changes. The mitigating effect of chlorogenic acid was lower in thioredoxin siRNA-transfected cells than in non-transfected cells. These results provide evidence that chlorogenic acid exerts potent antioxidant and neuroprotective effects through regulation of thioredoxin and modulation of ASK1 and thioredoxin binding in ischemic brain injury. These findings indicate that chlorogenic acid exerts a neuroprotective effect by regulating thioredoxin expression in cerebral ischemia and glutamate exposure conditions.


Brain Ischemia , Ischemic Stroke , Neuroprotective Agents , Stroke , Rats , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Glutamic Acid/pharmacology , Reactive Oxygen Species , Neuroprotective Agents/pharmacology , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Neurons/metabolism , Thioredoxins , Apoptosis , Stroke/metabolism
6.
Curr Pharm Des ; 30(6): 420-439, 2024.
Article En | MEDLINE | ID: mdl-38299405

Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.


Chlorogenic Acid , Clinical Trials as Topic , Colitis, Ulcerative , Drug Delivery Systems , Humans , Colitis, Ulcerative/drug therapy , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Chlorogenic Acid/chemistry , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use
7.
Iran J Med Sci ; 49(2): 110-120, 2024 Feb.
Article En | MEDLINE | ID: mdl-38356488

Background: Chlorogenic acid (CGA) is known to have antifibrotic and hypoglycemic effects and may play a role in preventing diabetes-induced pulmonary fibrosis. This study aimed to determine the effect and optimum dose of CGA on diabetes-induced pulmonary fibrosis. Methods: Thirty Wistar rats (two-month-old, 150-200 grams) were randomly divided into six groups, namely control, six weeks diabetes mellitus (DM1), eight weeks DM (DM2), and three DM2 groups (CGA1, CGA2, and CGA3) who received CGA doses of 12.5, 25, and 50 mg/Kg BW, respectively. After six weeks, CGA was administered intraperitoneally for 14 consecutive days. Lung tissues were taken for TGF-ß1, CTGF, SMAD7, Collagen-1, and α-SMA mRNA expression analysis and paraffin embedding. Data were analyzed using one-way ANOVA and the Kruskal-Wallis test. P<0.05 was considered statistically significant. Results: TGF-ß1 expression in the CGA1 group (1.01±0.10) was lower than the DM1 (1.33±0.25, P=0.05) and DM2 (1.33±0.20, P=0.021) groups. α-SMA expression in the CGA1 group (median 0.60, IQR: 0.34-0.64) was lower than the DM1 (median 0.44, IQR: 0.42-0.80) and DM2 (median 0.76, IQR: 0.66-1.10) groups. Collagen-1 expression in the CGA1 group (0.75±0.13) was lower than the DM1 (P=0.24) and DM2 (P=0.26) groups, but not statistically significant. CTGF expression in CGA groups was lower than the DM groups (P=0.088), but not statistically significant. There was an increase in SMAD7 expression in CGA groups (P=0.286). Histological analysis showed fibrosis improvement in the CGA1 group compared to the DM groups. Conclusion: CGA (12.5 mg/Kg BW) inhibited the expression of profibrotic factors and increased antifibrotic factors in DM-induced rats.


Diabetes Mellitus , Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Rats, Wistar , Collagen
8.
J Am Nutr Assoc ; 43(4): 315-325, 2024.
Article En | MEDLINE | ID: mdl-38227783

OBJECTIVE: Obesity and overweight are challenging health problems of the millennium that lead to diabetes, hypertension, dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and atherosclerosis. Green coffee bean exhibited significant promise in healthy weight management, potentiating glucose-insulin sensitization and supporting liver health. The safety and efficacy of a novel, patented water-soluble green coffee bean extract (GCB70® enriched in 70% total chlorogenic acid and <1% caffeine) was investigated in 105 participants for 12 consecutive weeks. An institutional review board and Drugs Controller General (India) (DCGI) approvals were obtained, and the study was registered at ClinicalTrials.gov. METHOD: Body weight, body mass index (BMI), waist circumference, lipid profile, plasma leptin, glycosylated hemoglobin (HbA1c), and total blood chemistry were assessed over a period of 12 weeks of treatment. Safety was affirmed. RESULTS: GCB70 (500 mg BID) supplementation significantly reduced body weight (approximately 6%; p = 0.000**) in approximately 97% of the study population. About a 5.65% statistically significant reduction (p = 0.000**) in BMI was observed in 96% of the study volunteers. Waist circumference was significantly reduced by 6.77% and 6.62% in 98% of the male and female participants, respectively. Plasma leptin levels decreased by 13.6% in 99% of the study population as compared to the baseline value. Upon completion of 12 weeks' treatment, fasting glucose levels decreased by 13.05% (p = 0.000**) in 79% of the study population. There was a statistically significant decrease in HbA1c levels in both male and female participants (p = 0.000**), while 86.7% of the study participants showed a statistically significant decrease in thyroid-stimulating hormone (TSH) levels (p = 0.000**). The mean decrease in TSH levels on completion of the treatment was 14.07% in the study population as compared to baseline levels. Total blood chemistry analysis exhibited broad-spectrum safety. CONCLUSIONS: This investigation demonstrated that GCB70 is safe and efficacious in healthy weight management.


Body Mass Index , Chlorogenic Acid , Glycated Hemoglobin , Leptin , Overweight , Plant Extracts , Waist Circumference , Adult , Female , Humans , Male , Middle Aged , Young Adult , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Coffea/chemistry , Coffee/chemistry , Dietary Supplements , Glycated Hemoglobin/analysis , India , Leptin/blood , Overweight/drug therapy , Overweight/blood , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Waist Circumference/drug effects , Weight Loss/drug effects
9.
Int J Biol Sci ; 20(1): 61-77, 2024.
Article En | MEDLINE | ID: mdl-38164171

As immune checkpoint inhibitors have shown good clinical efficacy, immune checkpoint blockade has become a vital strategy in cancer therapy. However, approximately only 12.5% patients experience benefits from immunotherapy. Herein, we identified the cancer differentiation inducer chlorogenic acid (CGA, now in the phase II clinical trial in China for glioma treatment) to be a small-molecular immune checkpoint inhibitor that boosted the antitumor effects of the anti-PD-1 antibody. CGA suppressed the expression of PD-L1 induced by interferon-γ in tumor cell culture through inhibition of the p-STAT1-IRF1 pathway and enhanced activity of activated T-cells. In two murine tumor xenografts, combination therapy of CGA with anti-PD-1 antibody decreased the expression of PD-L1 and IRF1 and increased the inhibitory effect of the anti-PD-1 antibody on tumor growth. Particularly, the activity of tumor infiltrated T cells was enhanced by CGA. CGA improved the gene expression of granzymes in tumor-infiltrated immune cells. In conclusion, through induction of differentiation, CGA appeared to suppress the expression of PD-L1 on cancer cells, effectively promoting infiltrated T cells in the tumor and boosting the antitumor effect of the anti-PD-1 antibody. Thus, CGA might serve as a promising agent to enhance anticancer immunotherapy if combined with anti-PD-1 antibodies.


Antineoplastic Agents , Neoplasms , Humans , Animals , Mice , B7-H1 Antigen/genetics , Programmed Cell Death 1 Receptor/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Antineoplastic Agents/pharmacology , Antibodies/therapeutic use , Immunotherapy , Cell Line, Tumor , Neoplasms/drug therapy
10.
Pharmacol Res Perspect ; 12(1): e1162, 2024 Feb.
Article En | MEDLINE | ID: mdl-38189160

Oxidative stress is an important mechanism of aging, and in turn, aging can also aggravate oxidative stress, which leads to a vicious cycle. In the process of the brain converting light into visual signals, the eye is stimulated by harmful blue-light radiation directly. Thus, the eye is especially vulnerable to oxidative stress and becomes one of the organs most seriously involved during the aging process. Cataracts, age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and dry eye are inextricably linked to the aging process and oxidative stress. Chlorogenic acid (CGA) has been demonstrated to have antioxidant and anti-inflammatory activities, and its validity has been established experimentally in numerous fields, including cardiovascular disease, metabolic disorders, cancers, and other chronic diseases. There has previously been evidence of CGA's therapeutic effect in the field of ophthalmopathy. Considering that many ophthalmic drugs lead to systemic side effects, CGA may act as a natural exogenous antioxidant for patients to take regularly, controlling their condition while minimizing side effects. In this paper, in vitro and in vivo studies of CGA in the treatment of age-related eye diseases are reviewed, and the prospects of CGA's antioxidant application for the eye are discussed. The aim of this review is to summarize the relevant knowledge and provide theoretical support for future research.


Diabetic Retinopathy , Eye Diseases , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Eye Diseases/drug therapy , Oxidative Stress , Diabetic Retinopathy/drug therapy
11.
Drug Chem Toxicol ; 47(2): 213-217, 2024 Mar.
Article En | MEDLINE | ID: mdl-36718984

The aim of this study was to determine the possible therapeutic effect of chlorogenic acid (CGA) on cisplatin (CDDP)-induced ovarian damage in rats. Rats were first exposed to CDDP (5 mg/kg) and then treated CGA (1.5 and 3 mg/kg) for three days. Oxidative stress (OS), inflammation and apoptosis markers were determined using spectrophotometric methods. Ovarian tissues were also evaluated histologically. The levels of OS, inflammation and apoptosis biomarkers increased by CDDP administration (p < 0.05). Treatments with CGA significantly alleviated these markers dose-dependently (p < 0.05). These data reveal that CGA may exert an ovoprotective effect by reducing pro-inflammatory mediators and enhancing antioxidant status in ovarian tissue.


Chlorogenic Acid , Cisplatin , Rats , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Cisplatin/toxicity , Antioxidants/pharmacology , Oxidative Stress , Inflammation/drug therapy , Apoptosis
12.
Biomed Pharmacother ; 170: 116003, 2024 Jan.
Article En | MEDLINE | ID: mdl-38091639

Deoxynivalenol (DON) is a common mycotoxic contaminant, frequently found in food and feed, causing a severe threat to human and animal health. Because of the widespread contamination of DON, humans involved in agricultural practices may be directly exposed to DON through the skin route. Chlorogenic acid (CGA) is a phenolic acid, which has anti-inflammatory and antioxidant properties. However, it is still unclear whether CGA can protect against DON-induced skin damage. Here, the effect of CGA on mitigating damage to human keratinocytes (HaCaT) triggered by DON, as well as its underlying mechanisms were investigated. Results demonstrated that DON exposure significantly decreased cell viability, and induced excessive mitochondrial reactive oxygen species (mtROS) generation, mitochondrial damage, oxidative stress, cell apoptosis and pyroptosis. However, CGA pretreatment for 2 h significantly increased cell viability and reversed DON-induced oxidative stress by improving antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), reducing mtROS generation and enhancing mitochondrial function through activating Nrf2/HO-1 pathway. Moreover, CGA significantly increased the Bcl-2 protein expression, decreased the protein expressions of Bax and cleaved Caspase-3, and suppressed the phosphorylated of ERK, JNK, NF-κB. Further experiments revealed that CGA could also inhibit the pyroptosis-related protein expressions including NLRP3, cleaved Caspase-1, GSDMD-N, cleaved IL-1ß and IL-18. In conclusion, our results suggest that CGA could attenuate DON-induced oxidative stress, inflammation, and apoptosis by activating the Nrf2/HO-1 pathway and inhibiting MAPK/NF-κB/NLRP3 pathway. CGA might be a novel promising therapeutic agent for alleviating the dermal damage triggered by DON.


NF-kappa B , Pyroptosis , Animals , Humans , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Oxidative Stress , Apoptosis , Keratinocytes/metabolism
13.
J Ethnopharmacol ; 322: 117580, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38104881

ETHNOPHARMACOLOGICAL RELEVANCE: Pyrrosia petiolosa (Christ) Ching (YBSW) is a Traditional Chinese medicine rich in chlorogenic acids. It is an important component in many Traditional Chinese medicinal hypoglycemic formulas and is commonly used by the Miao people to treat diabetes with good efficacy. Our previous research has suggested that chlorogenic acids may be the active ingredients in YBSW. AIM OF THE STUDY: To explore the mechanisms underlying the anti-type 2 diabetes mellitus (T2DM) hypoglycemic effects of chlorogenic acids contained in YBSW. MATERIALS AND METHODS: In vivo experiments, hematoxylin-eosin staining (HE) staining, and immunohistochemistry (IHC) were used to determine the effects of chlorogenic acids contained in YBSW in rats. mRNA expression profiling, microarray analysis, and network pharmacology were used to analyze the underlying mechanisms of the effects. Finally, apoptosis and changes in the related pathways were evaluated in vitro using a 3-(4,5-dimethyl-2-thia-zolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, quantitative real-time polymerase chain reaction, immunofluorescence (IF) assessment, and flow cytometry. RESULTS: After the administration of isochlorogenic acid B, the levels of triglycerides, serum total cholesterol, and fasting blood glucose significantly decreased. HE and IHC staining revealed that isochlorogenic acid B significantly increased insulin expression in islet cells. Using network pharmacology and RNA-seq Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, we screened the advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signaling pathway. We also verified that YBSW and its chlorogenic acid can inhibit apoptosis and downregulate the expression of related mRNA in the AGE-RAGE pathway in RIN-m5f cells. CONCLUSIONS: YBSW exhibits a significant hypoglycemic effect, with chlorogenic acid being an effective component. The therapeutic effect of chlorogenic acids contained in YBSW is mainly realized by promoting insulin secretion and pancreatic tissue repair. Moreover, YBSW substantially mitigates apoptosis via the AGE-RAGE pathway in T2DM.


Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Animals , Rats , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Gene Expression Profiling , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Molecular Docking Simulation , Network Pharmacology , RNA, Messenger
14.
Eur J Pharmacol ; 961: 176197, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38000721

The current study investigated the effect of chlorogenic acid, a polyphenolic compound found in numerous plant products, on a kainic acid-induced seizure rat model and its potential mechanism. Rats were administered chlorogenic acid (10 and 50 mg/kg) intraperitoneally for 30 min before kainic acid (15 mg/kg) intraperitoneal administration. Pretreatment with chlorogenic acid decreased the seizure score, increased the latency to onset of the first seizure, and decreased the mortality rate. Chlorogenic acid pretreatment also resulted in a significant reduction in glutamate elevation and neuronal death in the hippocampus of kainic acid-treated rats. In addition, electron microscopy revealed that kainic acid-induced changes in hippocampal mitochondrial structure were prevented by chlorogenic acid pretreatment. Additionally, the levels of mitochondrial function-related proteins, including sirtuin 3, Complex I, glutamate dehydrogenase 1 and ATP synthase, were increased, and the level of the mitochondrial damage marker cytochrome C was decreased in the hippocampus of chlorogenic acid/kainic acid rats. Furthermore, the expression of mitochondrial biogenesis-related proteins [AMP-activated protein kinase (AMPK), sirtuin1, and peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α)] and mitophagy-related proteins [phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), Parkin, and microtubule-associated protein 1 light chain 3 (LC3)] was decreased in the hippocampus of kainic acid-treated rats, which was reversed by chlorogenic acid pretreatment. These observations reveal the marked neuroprotective potential of chlorogenic acid against kainic acid-induced neurotoxicity and seizures through prevention of glutamate increase and preservation of AMPK/sirtuin 1/PGC-1α-mediated mitochondrial biogenesis and PINK1/Parkin-induced mitophagy to maintain adequate mitochondrial homeostasis and function.


Chlorogenic Acid , Kainic Acid , Rats , Animals , Kainic Acid/toxicity , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , AMP-Activated Protein Kinases/metabolism , Seizures/chemically induced , Seizures/prevention & control , Seizures/metabolism , Mitochondria , Cell Death , Ubiquitin-Protein Ligases/metabolism , Glutamates/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
15.
Sci Rep ; 13(1): 17803, 2023 10 18.
Article En | MEDLINE | ID: mdl-37853132

Increasing evidences demonstrate that chlorogenic acid (CGA), a polyphenol with multiple effects such as anti-inflammatory and anti-oxidation, protects against myocardial ischemia-reperfusion injury (MIRI) in vitro and in vivo. But its detailed cardiac protection mechanism is still unclear. The MIRI mice model was established by ligating the left anterior descending branch (LAD) of the left coronary artery in C57BL/6 mice. Sixty C57BL/6 mice were randomly divided into four groups. CGA group and CGA + I/R group (each group n = 15) were gavaged with 30 mg/kg/day CGA for 4 weeks. Sham group and I/R group mice (each group n = 15) were administered equal volumes of saline. In vitro MIRI model was constructed by hypoxia and reoxygenation of HL-1 cardiomyocytes. The results showed that CGA pretreatment reduced myocardial infarction size and cTnT contents in serum, simultaneously reduced the levels of Lnc Neat1 expression and attenuated NLRP3 inflammasome-mediated pyroptosis in myocardial tissue. Consistent with in vivo results, the pretreatment of 0.2 µM and 2 µM CGA for 12 h in HL-1 cardiomyocytes depressed hypoxia/reoxygenation-induced Lnc Neat1 expression, NLRP3 inflammasome activation and pyroptosis. Lnc Neat1 shRNA transfection mediated by lentivirus in HL-1 cardiomyocytes significantly reduced activation of NLRP3 inflammasome and pyroptosis. Our findings suggest that CGA protects against MIRI by depressing Lnc Neat1 expression and NLRP3 inflammasome-mediated pyrotosis. Inhibiting the levels of Lnc Neat1 expression may be a therapeutic strategy for MIRI.


Inflammasomes , Myocardial Reperfusion Injury , Mice , Animals , Inflammasomes/metabolism , Pyroptosis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Mice, Inbred C57BL , Hypoxia
16.
Neurosci Lett ; 817: 137529, 2023 11 20.
Article En | MEDLINE | ID: mdl-37871828

AIMS: Apoptosis may contribute to a considerable proportion of neuron death after acute cerebral ischemia, although the underlying mechanisms remain unknown. The purpose of this research is to investigate the effect of cerebral ischemia-reperfusion on miR-27a/smurf1 axis in rat cerebral cortex alone and in combination with chlorogenic acid. METHODS: To create a model of ischemic brain injury, nylon monofilament occlusion of the common carotid artery (CCAO) was used for 20 min. Chlorogenic acid (30 mg/kg) was given intraperitoneally (ip) 10 min before ischemia and 10 min before reperfusion. RESULTS: TUNEL staining of cerebral cortex neurons revealed an increase in the number of apoptotic neurons 24 h after reperfusion. At the molecular level, IR damage lowered bcl2 protein expression while simultaneously increasing bax levels and the bax/bcl2 ratio. Also, we observed higher miR-27a gene expression and higher TNF-α protein level as well as lower smurf1 protein expression after 24 h following CCAO. Treatment with chlorogenic acid significantly reduced the apoptotic damage and reversed molecular alterations in cerebral cortex neurons after IR. CONCLUSION: Our findings indicate that miR-27a/smurf1/TNF-α axis may play a regulatory function in cerebral cortex cell death, providing a new target for novel therapeutic approaches during transit ischemic stroke. It was also shown that chlorogenic acid could restore these molecular changes, demonstrating that it is an effective agent against cerebral cortex apoptotic damage after acute IR injury.


Brain Ischemia , MicroRNAs , Reperfusion Injury , Rats , Animals , Tumor Necrosis Factor-alpha , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism , Apoptosis , Brain Ischemia/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , MicroRNAs/metabolism
17.
Diabetes Metab J ; 47(6): 771-783, 2023 Nov.
Article En | MEDLINE | ID: mdl-37690781

BACKGRUOUND: Since prediabetes is a risk factor for metabolic syndromes, it is important to promote a healthy lifestyle to prevent prediabetes. This study aimed to determine the effects of green coffee (GC), chlorogenic acid (CGA) intake, and exercise training (EX) on hepatic lipid metabolism in prediabetes male C57BL/6 mice. METHODS: Forty-nine mice were randomly divided into two groups feeding with a normal diet (n=7) or a high-fat diet (HFD, n=42) for 12 weeks. Then, HFD mice were further divided into six groups (n=7/group): control (pre-D), GC, CGA, EX, GC+EX, and CGA+EX. After additional 10 weeks under the same diet, plasma, and liver samples were obtained. RESULTS: HFD-induced prediabetes conditions with increases in body weight, glucose, insulin, insulin resistance, and lipid profiles were alleviated in all treatment groups. Acsl3, a candidate gene identified through an in silico approach, was lowered in the pre-D group, while treatments partly restored it. HFD induced adverse alterations of de novo lipogenesis- and ß oxidation-associated molecules in the liver. However, GC and CGA supplementation and EX reversed or ameliorated these changes. In most cases, GC or CGA supplementation combined with EX has no synergistic effect and the GC group had similar results to the CGA group. CONCLUSION: These findings suggest that regular exercise is an effective non-therapeutic approach for prediabetes, and CGA supplementation could be an alternative to partially mimic the beneficial effects of exercise on prediabetes.


Chlorogenic Acid , Prediabetic State , Male , Mice , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/metabolism , Chlorogenic Acid/therapeutic use , Lipid Metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Dietary Supplements
18.
Eur J Pharmacol ; 956: 175950, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37544423

Parkinson's disease (PD) is characterized by both motor and non-motor symptoms, including hypokinesia, postural instability, dopaminergic (DA) neurons loss, and α-synuclein (α-syn) accumulation. A growing number of patients show negative responses towards the current therapies. Thus, preventative or disease-modifying treatment agents are worth to further research. In recent years, compounds extracted from natural sources become promising candidates to treat PD. Chlorogenic acid (CGA) is a phenolic compound appearing in coffee, honeysuckle, and eucommia that showed their potential as antioxidants and neuroprotectors. In this study, we investigated the anti-PD activity of CGA by testing its effect on 1-methyl-4-phenyl-1-1,2,3,6-tetrahydropyridine (MPTP) zebrafish model of PD. It was shown that CGA relieved MPTP-induced PD-like symptoms including DA neurons and blood vessel loss, locomotion reduction, and apoptosis events in brain. Moreover, CGA modulated the expression of PD- and autophagy-related genes (α-syn, lc3b, p62, atg5, atg7, and ulk1b), showing its ability to promote the autophagy which was interrupted in the PD pathology. The unblocked effect of CGA on autophagy was further verified in 6-hydroxydopamine (6-OHDA)-modeled SHSY5Y cells. Our findings indicated that CGA might relieve PD by boosting the autophagy in neuronal cells that makes CGA a potential candidate for anti-PD treatment.


Neuroprotective Agents , Parkinson Disease , Animals , Mice , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Zebrafish , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Autophagy , Dopaminergic Neurons , Disease Models, Animal , Mice, Inbred C57BL
19.
Adv Sci (Weinh) ; 10(28): e2302798, 2023 10.
Article En | MEDLINE | ID: mdl-37616338

Post-infectious irritable bowel syndrome (PI-IBS) occurs after acute infectious diarrhea, and dysbiosis can be involved in its pathogenesis. Here, the role of chlorogenic acid (CGA) is investigated, a natural compound with several pharmacological properties, in alleviating PI-IBS in rats. It is elucidated that the gut microbiota plays a key role in PI-IBS pathogenesis and that rectal administration of CGA alleviated PI-IBS by modulating the gut microbiota and its metabolites. CGA supplementation significantly increased fecal Bacteroides acidifaciens abundance and glycine levels. Glycine structurally altered B. acidifaciens extracellular vesicles (EVs) and enriched functional proteins in the EVs; glycine-induced EVs alleviated PI-IBS by reducing inflammation and hypersensitivity of the intestinal viscera and maintaining mucosal barrier function. Moreover, B. acidifaciens EVs are enriched in the brain tissue. Thus, CGA mediates the mitigation of PI-IBS through the gut microbiota and its metabolites. This study proposes a novel mechanism of signal exchange between the gut microenvironment and the host.


Gastrointestinal Microbiome , Irritable Bowel Syndrome , Rats , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Inflammation/complications , Glycine
20.
Biol Pharm Bull ; 46(7): 929-938, 2023.
Article En | MEDLINE | ID: mdl-37394644

Chlorogenic acid (CGA), derived from dicotyledons and ferns, has been demonstrated with anti-inflammatory, anti-bacterial, and free radical-scavenging effects and can be used to treat pulmonary fibrosis (PF). However, the specific mechanism by which CGA treats PF needs to be further investigated. In this study, in vivo experiment was firstly performed to evaluate the effects of CGA on epithelial-mesenchymal transition (EMT) and autophagy in bleomycin (BLM)-induced PF mice. Then, the effects of CGA on EMT and autophagy was assessed using transforming growth factor beta (TGF-ß) 1-induced EMT model in vitro. Furthermore, autophagy inhibitor (3-methyladenine) was used to verify that the inhibitory mechanism of CGA on EMT was associated with activating autophagy. Our results found that 60 mg/kg of CGA treatment significantly ameliorated lung inflammation and fibrosis in mice with BLM-induced PF. Besides, CGA inhibited EMT and promoted autophagy in mice with PF. In vitro studies also demonstrated that 50 µM of CGA treatment inhibited EMT and induced autophagy related factors in TGF-ß1-induced EMT cell model. Moreover, the inhibitory effect of CGA on autophagy and EMT in vitro was abolished after using autophagy inhibitor. In conclusion, CGA could inhibit EMT to treat BLM-induced PF in mice through, activating autophagy.


Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta1/metabolism , Epithelial Cells , Autophagy , Bleomycin/adverse effects
...